

Engine Control Research under NASA Aviation Safety Program Overview

OA Guo RHC February 28, 2012

Enhanced Engine Control Session

Session 1: Enhanced Engine Control

10:00	Overview - OA Guo
10:10	C-MAPSS40k Overview and Update - James Liu
10:30	Fast Engine Response Research - Ryan May
10:50	Piloted Evaluation of Fast Engine Response Mode - Jonathan Litt
11:10	Engine Icing Effects Simulation and Detection - Ryan May
11:30	Integrated Flight Propulsion Control Applications - James Urnes, SR. (Boeing)
11:50	Discussion - All

Enhanced Engine Research Overview

- Vehicle Systems Safety Technologies (VSST) project under Aviation Safety
- Lost of Control (LOC) Theme Problem under VSST
- Enhanced Engine Research for LOC
- Research Tool Development
- List of Research Activities

VSST Goal

NASA

(Aligned With National Policy & Priorities)

Develop technologies to reduce accidents and incidents through enhanced vehicle design, structure, systems, and operating concepts¹

Vehicle Systems Safety Technologies Overview

Improve Vehicle Safety by Proactively Mitigating Current and Future Risks

Maintain Vehicle Safety between Major Inspections

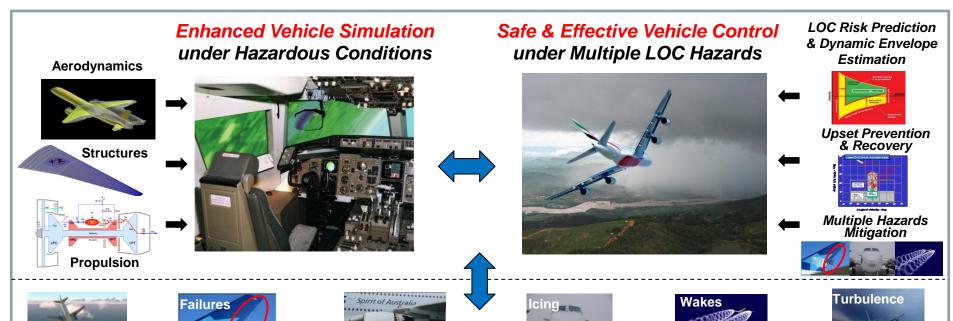
Assure Safe and Effective
Aircraft Control under
Hazardous Conditions

Reduce current risks; Identify and proactively mitigate new risks

5 www.nasa.gov

Assure Safe and Effective Aircraft Control under Hazardous Conditions (ASC)

Today


Aircraft Dynamics and Control Limitations under Hazardous Conditions can lead to Loss of Control (LOC)

- Current crew training under LOC conditions is limited due to model limitations for full stall conditions, failures and damage, and environmental hazards
- Information currently provided to the crew does not clearly inform of impending LOC
- Current autopilot systems are designed for nominal operations and often disengage under off-nominal conditions
- Current envelope protection systems provide limited capabilities

Tomorrow

Potential Increase in LOC Accidents Resulting from

- Increasing demand on the National airspace requiring high-density operations
- Increased demand on crew & automated systems
- Increased external hazard encounters (wakes, weather)
- New materials and vehicle configurations

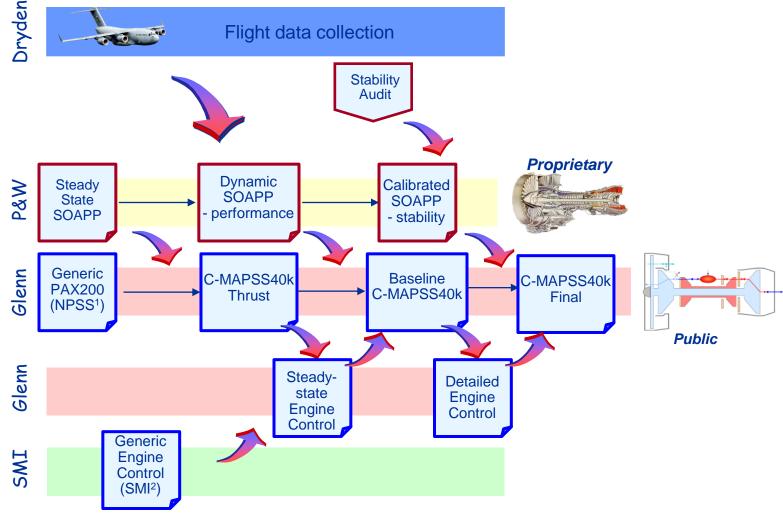
LOC Working Group to Identify Emergent Risks, Define Test Scenarios, & Develop Evaluation Requirements

Enhanced Propulsion Research

- Past research and experience have shown that propulsion systems can be very effective in helping airplanes recover from adverse conditions:
 - TOC (Throttle-Only-Control) research experience
 - PCA (Propulsion Controlled Aircraft)
- However, preliminary studies show that there are many other potentially catastrophic scenarios in which airplanes could be saved if the engines could:
 - Better integrate with flight control system
 - Respond faster
 - Generate more thrust for a short period of time

Enhanced Engine Operation

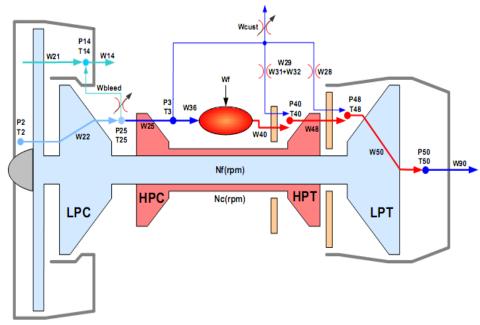
Engine dynamic simulation development


And, we need an engine simulation that is capable of predicting the engine dynamics and controller reactions/limits

In 2006:

- No engine dynamic simulation available (government or industry)
- Information on stall margin over the flight and operation was not available
- No realistic engine controller that was comparable to the FADEC

Creating A New High Fidelity Engine / Control Simulation



¹Numerical Propulsion System Simulation, co-winner of the NASA Software of the Year Award for 2001 ²Scientific Monitoring, Inc.

Commercial Modular Aero Propulsion System Simulation 40,000 (C-MAPSS40k)

- 40,000 Lb Thrust Class High Bypass Turbofan **Engine Simulation**
- MATLAB/Simulink Environment
- Publicly available
- Representative dynamic performance
- Realistic controller
- Realistic surge margin calculations

2011 GRC Software of the Year Award nomination, and Exceptional **Achievement Award**

Enhanced Engine Research Activities

- In-House Research:
 - Faster Response Engine Research
 - ✓ Control gain modification
 - ✓ Control limit modification
 - ✓ Risk management modeling
 - ✓ High speed idle
 - Off-Nominal Operation Modeling
 - ✓ Off-schedule VSV, VBV operation
 - ✓ High inlet angle operation simulation
 - ✓ Engine icing accretion simulation, detection, and control

NRA:

- Fast Response Engine Research"- Scientific Monitoring, Inc. (Jan. 2007 June 2010)
- ➤ "Fast Response Engine Controller" Pratt & Whitney (Jan. 2007 June 2010)

RTAPS:

- "Piloted Flight Simulator Evaluation of Fast Engine Reponses" Boeing, (August 2010 – June 2011)
- "Integrated Flight and Propulsion Control Architecture Study" Pratt & Whitney (Sept. 2011 – March 2013)

SBIR:

- "Robust Propulsion Control" Scientific Monitoring, Inc. (Jan. 2011 Aug. 2011)
- "Incremental Sampling Algorithms for Robust Propulsion Control" Aurora Flight Sciences Corporation (Jan. 2011 – Aug. 2011)

Thank you